//*****************************************************************************
#include "inc/hw_memmap.h"
#include "inc/hw_ssi.h"
#include "inc/hw_types.h"
#include "driverlib/ssi.h"
#include "driverlib/gpio.h"
#include "driverlib/sysctl.h"
#include "driverlib/uart.h"
#include "utils/uartstdio.h"
//*****************************************************************************
//
//! \addtogroup ssi_examples_list
//! <h1>SPI Master
(spi_master)</h1>
//!
//! This example shows how to configure the
SSI0 as SPI Master. The code will
//! send three characters on the master Tx
then polls the receive FIFO until
//! 3 characters are received on the master
Rx.
//!
//! This example uses the following
peripherals and I/O signals. You must
//! review these and change as needed for
your own board:
//! - SSI0 peripheral
//! - GPIO Port
A peripheral (for SSI0 pins)
//! - SSI0CLK - PA2
//! - SSI0Fss - PA3
//! - SSI0Rx - PA4
//! - SSI0Tx - PA5
//!
//! The following UART signals are
configured only for displaying console
//! messages for this example. These are not required for operation of SSI0.
//! - UART0 peripheral
//! - GPIO Port
A peripheral (for UART0 pins)
//! - UART0RX - PA0
//! - UART0TX - PA1
//!
//! This example uses the following
interrupt handlers. To use this example
//! in your own application you must add
these interrupt handlers to your
//! vector table.
//! - None.
//!
//
//*****************************************************************************
//*****************************************************************************
//
// Number of bytes to send and receive.
//
//*****************************************************************************
#define NUM_SSI_DATA 5
//*****************************************************************************
//
// This function sets up UART0 to be used
for a console to display information
// as the example is running.
//
//*****************************************************************************
void
InitConsole(void)
{
//
// Enable GPIO port A which is used for UART0 pins.
// TODO: change this to whichever GPIO port you are using.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
//
// Configure the pin muxing for UART0 functions on port A0 and A1.
// This step is not necessary if your part does not support pin muxing.
// TODO: change this to select the port/pin you are using.
//
GPIOPinConfigure(GPIO_PA0_U0RX);
GPIOPinConfigure(GPIO_PA1_U0TX);
//
// Select the alternate (UART) function for these pins.
// TODO: change this to select the port/pin you are using.
//
GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);
//
// Initialize the UART for console I/O.
//
UARTStdioInit(0);
}
//*****************************************************************************
//
// Configure SSI0
in master Freescale (SPI) mode.
This example will send out
// 3 bytes of data, then wait for 3 bytes
of data to come in. This will all be
// done using the polling method.
//
//*****************************************************************************
int
main(void)
{
unsigned long ulDataTx[NUM_SSI_DATA];
unsigned long ulDataRx[NUM_SSI_DATA];
unsigned long ulindex;
//
// Set the clocking to run directly from the external
crystal/oscillator.
// TODO: The SYSCTL_XTAL_ value must be changed to match the value of
the
// crystal on your board.
//
SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN |
SYSCTL_XTAL_6MHZ);
//
// Set up the serial console to use for displaying messages. This is
// just for this example program and is not needed for SSI operation.
//
InitConsole();
//
// Display the setup on the console.
//
UARTprintf("SSI ->\n");
UARTprintf(" Mode:
SPI\n");
UARTprintf(" Data:
8-bit\n\n");
/*SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
GPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, GPIO_PIN_3);
GPIOPinWrite(GPIO_PORTA_BASE, GPIO_PIN_3,0);
GPIOPinWrite(GPIO_PORTA_BASE, GPIO_PIN_3,GPIO_PIN_3);
GPIOPinWrite(GPIO_PORTA_BASE, GPIO_PIN_3,~0);
GPIOPinWrite(GPIO_PORTA_BASE, GPIO_PIN_3,GPIO_PIN_3);
SysCtlPeripheralDisable(SYSCTL_PERIPH_GPIOA);*/
//
// The SSI0 peripheral must be enabled for use.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI0);
//
// For this example SSI0 is used with PortA[5:2]. The actual port and pins
// used may be different on your part, consult the data sheet for more
// information. GPIO port A needs
to be enabled so these pins can be used.
// TODO: change this to whichever GPIO port you are using.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
//
// Configure the pin muxing for SSI0 functions on port A2, A3, A4, and
A5.
// This step is not necessary if your part does not support pin muxing.
// TODO: change this to select the port/pin you are using.
//
GPIOPinConfigure(GPIO_PA2_SSI0CLK);
GPIOPinConfigure(GPIO_PA3_SSI0FSS);
GPIOPinConfigure(GPIO_PA4_SSI0RX);
GPIOPinConfigure(GPIO_PA5_SSI0TX);
//
// Configure the GPIO settings for the SSI pins. This function also gives
// control of these pins to the SSI hardware. Consult the data sheet to
// see which functions are allocated per pin.
// The pins are assigned as follows:
// PA5 - SSI0Tx
// PA4 - SSI0Rx
// PA3 - SSI0Fss
// PA2 - SSI0CLK
// TODO: change this to select the port/pin you are using.
//
GPIOPinTypeSSI(GPIO_PORTA_BASE, GPIO_PIN_5 | GPIO_PIN_4 | GPIO_PIN_3 |
GPIO_PIN_2);
//GPIOPinTypeSSI(GPIO_PORTA_BASE, GPIO_PIN_5 | GPIO_PIN_4 | GPIO_PIN_2);
//
// Configure and enable the SSI port for SPI master mode. Use SSI0,
// system clock supply, idle clock level low and active low clock in
// freescale SPI mode, master mode, 1MHz SSI frequency, and 8-bit data.
// For SPI mode, you can set the polarity of the SSI clock when the SSI
// unit is idle. You can also
configure what clock edge you want to
// capture data on. Please
reference the datasheet for more information on
// the different SPI modes.
//
//SSIConfigSetExpClk(SSI0_BASE, SysCtlClockGet(), SSI_FRF_TI,
//
SSI_MODE_MASTER, 500000, 8);
SSIConfigSetExpClk(SSI0_BASE, SysCtlClockGet(), SSI_FRF_MOTO_MODE_1,
SSI_MODE_MASTER, 500000,
8);
//
// Enable the SSI0 module.
//
SSIEnable(SSI0_BASE);
//
// Read any residual data from the SSI port. This makes sure the receive
// FIFOs are empty, so we don't read any unwanted junk. This is done here
// because the SPI SSI mode is full-duplex, which allows you to send and
// receive at the same time. The
SSIDataGetNonBlocking function returns
// "true" when data was returned, and "false" when
no data was returned.
// The "non-blocking" function checks if there is any data in
the receive
// FIFO and does not "hang" if there isn't.
//
while(SSIDataGetNonBlocking(SSI0_BASE, &ulDataRx[0]))
{
}
//
// Initialize the data to send.
//
ulDataTx[0] = 'H';//s
ulDataTx[1] = 'e';//p
ulDataTx[2] = 'l';//i
ulDataTx[3] = 'l';//i
ulDataTx[4] = 'o';//i
//
// Display indication that the SSI is transmitting data.
//
UARTprintf("Sent:\n ");
//
// Send 3 bytes of data.
//
//SSIDataPut(SSI0_BASE, 'A');
for(ulindex = 0; ulindex < NUM_SSI_DATA; ulindex++)
{
//
// Display the data that SSI is transferring.
//
UARTprintf("'%c' ", ulDataTx[ulindex]);
//
// Send the data using the "blocking" put function. This function
// will wait until there is room in the send FIFO before returning.
// This allows you to assure that all the data you send makes it into
// the send FIFO.
//
SSIDataPut(SSI0_BASE, ulDataTx[ulindex]);
}
//
// Wait until SSI0 is done transferring all the data in the transmit
FIFO.
//
while(!SSIBusy(SSI0_BASE))
{
}
//
// Display indication that the SSI is receiving data.
//
UARTprintf("\nReceived:\n
");
//
// Receive 3 bytes of data.
//
for(ulindex = 0; ulindex < NUM_SSI_DATA; ulindex++)
{
//
// Receive the data using the "blocking" Get function. This
function
// will wait until there is data in the receive FIFO before returning.
//
SSIDataGet(SSI0_BASE, &ulDataRx[ulindex]);
//
// Since we are using 8-bit data, mask off the MSB.
//
ulDataRx[ulindex] &= 0x00FF;
//
// Display the data that SSI0 received.
//
UARTprintf("'%c' ", ulDataRx[ulindex]);
}
UARTprintf("\n");
while(1);
//
// Return no errors
//
//return(0);
}