Kalman滤波理论在20世纪60年代一经提出,便得到了军事、控制、通信等领域的极广泛的应用。它可以实现随机干扰下的线性动态系统的最优估计,目前Kalman滤波器的实现方式主要有两种,一是在PC机上实现,可以同时满足计算精度和实时性的要求,但是PC机体积大,质量重,成本高;二是通过DSP等芯片来实现,用这种方式实现的Kalman滤波器虽然体积小,质量轻,但是因其指令顺序执行的CPU架构,在系统复杂时无法满足系统的实时性要求。随着控制系统的复杂性的提高,系统的阶次变大,如组合导航系统的滤波,其滤波的阶次一般都要18阶,如果对系统进一步细化建模或增加其复杂性,其滤波阶次可以达到几十阶。因此,Kalman滤波器在工程应用中的实现遇到了系统体积、重量、成本和系统精度、速度等性能不能兼顾的问题。
随着现代电子技术的发展,FPGA具有系统结构和逻辑单元灵活、集成度高以及适用范围宽等特点,可以很好地解决这个难题。因为FPGA采用的是硬件并行算法,能很好的解决速度和实时性的问题,并且其具有灵活的可配置特性和优良的抗干扰能力,使得FPGA构成的数字信号处理系统非常易于修改、测试及硬件升级。随着FPGA技术的不断成熟,其内嵌资源不断丰富,硬核乘法器和块RAM的数目不断增长,使得FPGA实现复杂的数字信号处理算法变得更为简单和快速。因此,本文对FPGA技术和Kalman滤波算法进行结合研究,探索Kalman滤波算法在FPGA中的实现方式并进行性能验证,以对基于FPGA的Kalman滤波算法的工程实现提供参考。
1 Kalman滤波算法理论
Kalman滤波是在时域内以信号的一、二阶统计特性已知为前提、以均方误差极小为判据,能自动跟踪信号统计性质的非平稳变化,具有递归性质的一种算法。它处理的对象是随机系统,并能正确估计出有用信号。设离散系统差分方程如下:
|