1 概述
EPS应急电源一般由主电源和应急电源两部分组成。主电源一般来自电力系统或电网,正常时,消防用电设备由主电源供电。应急电源的作用是当主电源发生故障而停电时, 保证各种消防设备(消防给水、消防电梯、防排烟设备、应急照明和疏散指示标志、应急广播、电动的防火门窗、卷帘、自动灭火装置)和消防控制室等仍能继续运行。在消防电源中设置EPS应急电源是确保消防电源向消防用电负荷可靠供电的重要措施之一。
目前, 消防应急电源主要有三种类型: ①独立正常电源的专用馈电线路; ②自备柴油发电机组; ③由蓄电池组构成的交、直流供电电源。由蓄电池组作为备用电能的应急电源( 即所谓的静态EPS)可分为直流静态EPS和交流静态EPS两种。
不管是直流还是交流EPS,对于蓄电池组实现最佳充电、保养和维护,以确保蓄电池组在应急情况下能够处于满容量状态是保障EPS应急电源可靠工作的关键。目前,在我国消防电源中大量使用的静态EPS, 对于蓄电池组的充电一般采用串联集中式充电方式, 即由一个集中式充电装置实现对串联电池组充电,如图1所示。这种充电方式的优点是充电设备简单、造价低。不足之处是对电池组充电不均衡, 容易出现部分电池过充、部分电池欠充,即充电不足的现象, 从而导致电池组充电容量不足、电池损坏或电池组的寿命缩短。
图1 蓄电池组集中式充电模式示意图
克服集中充电模式的不足,本文提出一种均衡式充电模式。这种充电模式对每一节电池都配置一个单独的充电器。通过对每节电池的单独充电和维护来保证电池组实现均衡充电,不会出现各节电池充电不均衡的现象。另外, 通过对各个充电模块的完善设计, 就能保证各节电池不会出现欠充或过充的现象。
2 EPS均衡式充电装置的结构和工作原理
图2所示是本文提出的一种蓄电池组均衡充电模式结构示意图, 图中CM表示充电器或充电模块。在这种均衡式充电模式中,对电池组的每一节电池都单独配置一个充电模块, 它是均衡式充电装置的核心。在应急电源中, 当处于非应急状态运行时,应急电源的输出通过开关直接由市电供给, 这时, 逆变器不工作,各充电模块给各节相应的电池进行充电或浮充电。当应急电源处于应急工作状态时, 由电池组给逆变器供电,通过逆变器输出应急逆变交流电源。这时, 由于各充电模块无交流输入, 处于不工作状态, 不影响蓄电池组的放电工作状态。
图2 电池组均衡式充电模式示意图
在这种充电模式设计中, 各充电模块的设计是关键。充电模块的主要作用是对每节电池进行充电和浮充电。根据蓄电池的充电要求,当电池端电压低于标称电压或小于最高容许充电电压时, 要求充电模块具有恒流输出功能, 实现对电池的恒流充电, 即所谓的主充电;而当电池电压达到电池最高容许充电电压后, 这时要求充电模块具有恒压输出功能, 使电池处于恒压充电状态, 即所谓的均充电。因此,充电模块应具有输出稳压和稳流输出功能。另外,本文所设计的充电模块还应具有如输出状态指示、输出断线告警、交流输入故障等相关的指示和告警功能。
由于在均衡式充电模式中, 每个充电模块仅负责一节电池的充电,因此充电模块输出电压设计成12V标称输出电压。输出电流则根据电池的容量来确定。由于本均衡充电装置主要是针对100A·h容量以下的EPS应急电源应用而设计的,因此, 充电模块的额定输出电流一般不超过10A.这样充电模块的功率最大一般为200W左右。
3 充电模块设计
在充电模块的设计中,应该说采用线性稳压电源、相控式晶闸管电源和高频开关电源均能满足上述提到的充电功能要求。考虑到装置的体积、重量、结构和维护的方便性,本均衡充电装置的充电模块采用了高频开关电源。由于模块需要的功率不大,在开关电源形式选择上采用了反激式高频开关电源。这种电源具有体积小, 效率高等特点。
一般的反激式高频开关电源都设计成稳压输出, 在电池充电应用中, 要加入外围电路实现恒流限压充电。其原理结构框图如图3所示,它主要由交流输入整流电路、高频反激式变换器、电流型脉宽调制电路、输出反馈控制电路和保护告警及状态指示等电路组成。下面分别介绍主要组成电路设计和工作原理。
图3 充电模块原理结构示意图
3.1 高频反激式变换器
高频反激式变换器电路如图4所示。在反激变换器中一般有两种工作方式:完全能量转换和不完全能量转换。当变换器输入电压在一个较大的范围内发生变化, 或负载在较大范围内变化时, 必然跨越两种工作方式,因此要求变换器能在两种工作方式中都能稳定工作。
图4 反激式变换电路
图5所示的是工作在完全能量转换状态下, 开关管Q1上的电压与电流波形。在这种工作模式下, 每个开关周期被分为三个阶段(分别如图中1、2、3所示) .在阶段1, 开关管导通, 变压器原边电流沿斜线上升到峰值电流, 并将能量储存在高频变压器中。
图5 完全能量转换的开关管电压及电流波形
在阶段2, 开关管关断, 上一阶段中变压器储存的能量传递给副边。由于漏感的存在会产生尖峰电压, 所以实际电路中利用钳位电路(图4中的C1、R4、D2、R5、C2) 把电压钳制在开关管的漏- 源击穿电压值以下。在阶段3, 感应电压降为零。变压器已将在阶段1储存的能量全部释放, 但该电压变化又通过激励由杂散电容和初级电感构成的谐振电路, 产生衰减振荡波形。 |