摘 要: 经典的码盘数字测速方法有M 法、T 法、M/ T 法,但都有一定的不足。为了克服原有方法的不足,设计并实现了一种在较大速度范围都有良好精度和良好快速性的测速方法。电路采用FPGA 实现,测速得到的数据通过PCI 总线从设备控制器实现与控制计算机通信。从而根据实际传输的需要,简化了PCI 从设备控制器,实现了PCI 总线I/ O 普通读与猝发读数据的功能。
0 引 言
增量式码盘是一种原理简单,抗干扰能力强,可靠性高,适合于长距离传输的位置与速度测量装置,已成功应用于大量的控制系统中,极大地提高了其位置控 制精度。理论上,只要测得码盘输出信号的频率,即可得到被测轴的转速,并且可以得到比模拟方法更高的测量精度。本文以增量式码盘为基础,设计实现一种在较 宽速度范围都有较高精度并且有良好反应速度的速度、位置测量装置。
利用增量式码盘的反馈脉冲信号测量速度的典型方法有3 种: M 法、T 法和M/ T 法。其中,M 法是直接计取给定采样周期内的反馈脉冲数来测量速度的,低速时会因为脉冲数少而影响测速精度; T 法是通过测量两个相邻反馈脉冲的间隔时间来测量速度的,高速时则因为脉冲间隔短而导致精度不高; M/ T 法结合了前两种方法的优点,在大致相等的采样间隔内,计取Cm 个反馈脉冲,并同时计取这Cm 个反馈脉冲间隔内插入的高频时标信号数Cf ,经计算得到速度测量值。M/ T 法虽然克服了前两种方法的缺点,但仍存在低速时采样时机不确定,精度不高等问题,这给定周期采样的数字伺服控制系统带来很大的不便,所以又出现了变M/ T 法等方法,以进一步改善M/ T 法的性能和实用性[ 12] 。
本文利用FPGA 实现了一种改进的M/ T 法,克服经典M/ T 法的不足,其测速电路与控制器间的数据接口形式有PCI 总线和双端口RAM,便于在高性能控制系统中使用。
1 总体方案
根据控制系统的实际情况,所设计的测速板具有位置测量和速度测量功能,如图1 所示,由倍频辨向模块、改进M/ T 法测速模块、PCI 从设备控制器三个部分组成。
图1 总体设计方案。 1. 1 倍频辨向
增量式码盘的典型输出是两个相位差为90°的方波信号A,B 以及零位脉冲信号Z( 见图2) 。
图2 增量式码盘输出。 A,B 之间的相位关系标志被测轴的转向,即当正转时A 相超前B 相90°,反转时B 相超前A 相90°。对于每个确定的码盘,其脉冲周期T 对应的码盘角位移固定为,故其量化误差为/ 2 。如果能将A,B 信号四倍频,则计数脉冲的周期将减小到T / 4,量化误差下降为θ/ 8,从而使增量式码盘的角位移测量精度提高4 倍。从图2 可知,根据A,B 两方波信号之间相位关系的4 次变化,即可产生四倍频信号和辨向信号,这样就可以实现增量式码盘测量精度的提高 。
1. 2 改进的M/ T 测速算法
图3 展示了改进M/ T 法的电路原理,这是实现高精度的硬件基础。图4 为改进M/ T 法的时序图。
图3 改进M/ T 法电路原理图。 图4 改进M/ T 法时序图。 对图3 及其时序图4 的分析可以看出: 本测速电路在每个反馈脉冲时锁存高频时钟的计数值,两个采样周期间的高频时标增量值Ct 实际表示为T 2 前一个反馈脉冲上升沿到T4 前一个反馈脉冲上升沿的高频时标增量,而在采样周期内每个反馈脉冲到来都对反馈脉冲计数器计数,两个采样脉冲采得反馈脉冲增量值Cm 实际表示为T 1 ~ T 3 之间的反馈脉冲增量值,位置的反馈脉冲增量值Cm‘ 则是在C m 的基础上考虑方向得到的,那么结合32 位浮点运算,这种测速方法就解决了采样时机不确定的缺点。
根据上述分析,通过差分处理就可得到当前实际采样间隔内的反馈脉冲增量值Cm 和高频时标增量值Ct :
这样得到的速度是当前实际采样间隔内的平均速度:
式中: K R 为反馈信号脉冲当量; f 0 为高频时标频率。
在实际采样点T 2 处,高频时标信号f 0 的边沿不能总与反馈脉冲信号plus 的边沿保持一致,因而会产生? 1 个高频时标当量的计数误差,从而影响这种测速算法的测速精度。因此高精度数字测速算法的测速相对误差为:
动态位置算法不仅关注已经发生的反馈脉冲数量,也关注反馈脉冲的发生时刻,其硬件基础是依据图3 所示逻辑电路的。根据当前有效采样周期的定周期采样点和实际采样点之间的时间差:
并根据改进的M/ T 法得到被测对象的平均速度v n ,由vn 和 T n 相乘就可以计算出时间差 T ( n) 中所包含的动态位置信息,因此由当前有效采样周期内的增量式高精度动态位置信息可以得出位置量:
可根据这种方法完成测位置的功能。
|