zhangmangui 发表于 2014-2-28 19:56
搬移后肯定都是在RAM中执行了
你可以对比一下 比如蜂鸣器的发声频率
在flash中运行的时候明显慢 搬移 ...
那我就有点迷糊了
斑竹那您看看这个TI的测试程序
// TI File $Revision: /main/3 $
// Checkin $Date: July 2, 2007 11:31:49 $
//###########################################################################
//
// FILE: DSP28_281xFlash.c
//
// TITLE: DSP281x Flash example.
//
// ASSUMPTIONS:
//
// This program requires the DSP281x V1.00 header files.
// As supplied, this project is configured for "boot to Flash" operation.
//
// This example runs the EV Timer Period example from the
// Flash.
//
// 1) Build the project
// 2) Flash the .out file into the device. This program will fit on
// an F2812 or an F2810
// 3) Set the hardware jumpers to boot to Flash
// 4) Use the included GEL file to load the project, symbols
// defined within the project and the variables into the watch
// window.
//
// Steps that were taken to convert the EV example from RAM
// to Flash execution:
//
// - Change the linker cmd file to reflect the flash memory map.
// This example uses the DSP281x F2812.cmd file.
// - Make sure any initialized sections are mapped to Flash.
// In SDFlash utility this can be checked by the View->Coff/Hex
// status utility. Any section marked as "load" should be
// allocated to Flash.
// - Make sure there is a branch instruction from the entry to Flash
// at 0x3F7FF6 to the beginning of code execution. This example
// uses the DSP281x_CodeStartBranch.asm file to accomplish this.
// - Set boot mode Jumpers to "boot to Flash"
// - For best performance from the flash, modify the waitstates
// and enable the flash pipeline as shown in this example.
// Note: any code that manipulates the flash waitstate and pipeline
// control must be run from RAM. Thus these functions are located
// in their own memory section called ramfuncs.
//
// DESCRIPTION:
//
// This program sets up EVA Timer 1, EVA Timer 2, EVB Timer 3
// and EVB Timer 4 to fire an interrupt on a period overflow.
// A count is kept each time each interrupt passes through
// the interrupt service routine.
//
// EVA Timer 1 has the shortest period while EVB Timer4 has the
// longest period.
//
// ISR Locations:
// eva_timer1_isr executed from RAM, puts flash in sleep mode
// eva_timer2_isr executed from RAM, puts flash in standby mode
// evb_timer3_isr executed from RAM, puts flash in sleep mode
// and later moves it to standby
// evb_timer4_isr executed from FLASH
//
// Watch Variables:
//
// EvaTimer1InterruptCount;
// EvaTimer2InterruptCount;
// EvbTimer3InterruptCount;
// EvbTimer4InterruptCount;
//
//###########################################################################
// $TI Release: DSP281x C/C++ Header Files V1.20 $
// $Release Date: July 27, 2009 $
//###########################################################################
#include "DSP281x_Device.h" // DSP281x Headerfile Include File
#include "DSP281x_Examples.h" // DSP281x Examples Include File
// Functions that will be run from RAM need to be assigned to
// a different section. This section will then be mapped using
// the linker cmd file.
#pragma CODE_SECTION(eva_timer1_isr, "ramfuncs");//eva_timer_isr为一个函数名
#pragma CODE_SECTION(eva_timer2_isr, "ramfuncs");
#pragma CODE_SECTION(evb_timer3_isr, "ramfuncs");
// Prototype statements for functions found within this file.
interrupt void eva_timer1_isr(void);
interrupt void eva_timer2_isr(void);
interrupt void evb_timer3_isr(void);
interrupt void evb_timer4_isr(void);
void init_eva_timer1(void);
void init_eva_timer2(void);
void init_evb_timer3(void);
void init_evb_timer4(void);
// Global variables used in this example
Uint32 EvaTimer1InterruptCount;
Uint32 EvaTimer2InterruptCount;
Uint32 EvbTimer3InterruptCount;
Uint32 EvbTimer4InterruptCount;
Uint32 LoopCount;
// These are defined by the linker (see F2812.cmd)
extern Uint16 RamfuncsLoadStart;
extern Uint16 RamfuncsLoadEnd;
extern Uint16 RamfuncsRunStart;
void main(void)
{
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP281x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP281x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP281x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP281x_DefaultIsr.c.
// This function is found in DSP281x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // This is needed to write to EALLOW protected registers
PieVectTable.T1PINT = &eva_timer1_isr;
PieVectTable.T2PINT = &eva_timer2_isr;
PieVectTable.T3PINT = &evb_timer3_isr;
PieVectTable.T4PINT = &evb_timer4_isr;
EDIS; // This is needed to disable write to EALLOW protected registers
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP281x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
init_eva_timer1();
init_eva_timer2();
init_evb_timer3();
init_evb_timer4();
// Step 5. User specific code, enable interrupts:
// Copy time critical code and Flash setup code to RAM
// This includes the following ISR functions: EvaTimer1(), EvaTimer2()
// EvbTimer3 and and InitFlash();
// The RamfuncsLoadStart, RamfuncsLoadEnd, and RamfuncsRunStart
// symbols are created by the linker. Refer to the F2812.cmd file.
MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart);
// Call Flash Initialization to setup flash waitstates
// This function must reside in RAM
InitFlash();
// Initialize count values to 0
EvaTimer1InterruptCount = 0;
EvaTimer2InterruptCount = 0;
EvbTimer3InterruptCount = 0;
EvbTimer4InterruptCount = 0;
LoopCount = 0;
// Enable PIE group 2 interrupt 4 for T1PINT
PieCtrlRegs.PIEIER2.all = M_INT4;
// Enable PIE group 3 interrupt 1 for T2PINT
PieCtrlRegs.PIEIER3.all = M_INT1;
// Enable PIE group 4 interrupt 4 for T3PINT
PieCtrlRegs.PIEIER4.all = M_INT4;
// Enable PIE group 5 interrupt 1 for T4PINT
PieCtrlRegs.PIEIER5.all = M_INT1;
// Enable CPU INT2 for T1PINT, INT3 for T2PINT, INT4 for T3PINT
// and INT5 for T4PINT:
IER |= (M_INT2 | M_INT3 | M_INT4 | M_INT5);
// Enable global Interrupts and higher priority real-time debug events:
EINT; // Enable Global interrupt INTM
ERTM; // Enable Global realtime interrupt DBGM
// Step 6. IDLE loop. Just sit and loop forever:
while(1)
{
LoopCount++;
}
}
void init_eva_timer1(void)
{
// Initialize EVA Timer 1:
// Setup Timer 1 Registers (EV A)
EvaRegs.GPTCONA.all = 0;
// Set the Period for the GP timer 1 to 0x0200;
EvaRegs.T1PR = 0x0200; // Period
EvaRegs.T1CMPR = 0x0000; // Compare Reg
// Enable Period interrupt bits for GP timer 1
// Count up, x128, internal clk, enable compare, use own period
EvaRegs.EVAIMRA.bit.T1PINT = 1;
EvaRegs.EVAIFRA.bit.T1PINT = 1;
// Clear the counter for GP timer 1
EvaRegs.T1CNT = 0x0000;
EvaRegs.T1CON.all = 0x1742;
// Start EVA ADC Conversion on timer 1 Period interrupt
EvaRegs.GPTCONA.bit.T1TOADC = 2;
}
void init_eva_timer2(void)
{
// Initialize EVA Timer 2:
// Setup Timer 2 Registers (EV A)
EvaRegs.GPTCONA.all = 0;
// Set the Period for the GP timer 2 to 0x0200;
EvaRegs.T2PR = 0x0400; // Period
EvaRegs.T2CMPR = 0x0000; // Compare Reg
// Enable Period interrupt bits for GP timer 2
// Count up, x128, internal clk, enable compare, use own period
EvaRegs.EVAIMRB.bit.T2PINT = 1;
EvaRegs.EVAIFRB.bit.T2PINT = 1;
// Clear the counter for GP timer 2
EvaRegs.T2CNT = 0x0000;
EvaRegs.T2CON.all = 0x1742;
// Start EVA ADC Conversion on timer 2 Period interrupt
EvaRegs.GPTCONA.bit.T2TOADC = 2;
}
void init_evb_timer3(void)
{
// Initialize EVB Timer 3:
// Setup Timer 3 Registers (EV B)
EvbRegs.GPTCONB.all = 0;
// Set the Period for the GP timer 3 to 0x0200;
EvbRegs.T3PR = 0x0800; // Period
EvbRegs.T3CMPR = 0x0000; // Compare Reg
// Enable Period interrupt bits for GP timer 3
// Count up, x128, internal clk, enable compare, use own period
EvbRegs.EVBIMRA.bit.T3PINT = 1;
EvbRegs.EVBIFRA.bit.T3PINT = 1;
// Clear the counter for GP timer 3
EvbRegs.T3CNT = 0x0000;
EvbRegs.T3CON.all = 0x1742;
// Start EVA ADC Conversion on timer 3 Period interrupt
EvbRegs.GPTCONB.bit.T3TOADC = 2;
}
void init_evb_timer4(void)
{
// Initialize EVB Timer 4:
// Setup Timer 4 Registers (EV B)
EvbRegs.GPTCONB.all = 0;
// Set the Period for the GP timer 4 to 0x0200;
EvbRegs.T4PR = 0x1000; // Period
EvbRegs.T4CMPR = 0x0000; // Compare Reg
// Enable Period interrupt bits for GP timer 4
// Count up, x128, internal clk, enable compare, use own period
EvbRegs.EVBIMRB.bit.T4PINT = 1;
EvbRegs.EVBIFRB.bit.T4PINT = 1;
// Clear the counter for GP timer 4
EvbRegs.T4CNT = 0x0000;
EvbRegs.T4CON.all = 0x1742;
// Start EVA ADC Conversion on timer 4 Period interrupt
EvbRegs.GPTCONB.bit.T4TOADC = 2;
}
// This ISR MUST be executed from RAM as it will put the Flash into Sleep
interrupt void eva_timer1_isr(void)
{
Uint16 i;
// Put the Flash to sleep
FlashRegs.FPWR.bit.PWR = FLASH_SLEEP;
EvaTimer1InterruptCount++;
// Short Delay to simulate some ISR Code
for(i = 1; i < 0x03FF; i++) {}
// Enable more interrupts from this timer
EvaRegs.EVAIMRA.bit.T1PINT = 1;
// Note: To be safe, use a mask value to write to the entire
// EVAIFRA register. Writing to one bit will cause a read-modify-write
// operation that may have the result of writing 1's to clear
// bits other then those intended.
EvaRegs.EVAIFRA.all = BIT7;
// Acknowledge interrupt to receive more interrupts from PIE group 2
PieCtrlRegs.PIEACK.all = PIEACK_GROUP2;
}
// This ISR MUST be executed from RAM as it will put the Flash into Standby
interrupt void eva_timer2_isr(void)
{
Uint16 i;
// Put the Flash into standby
FlashRegs.FPWR.bit.PWR = FLASH_STANDBY;
EvaTimer2InterruptCount++;
// Short Delay to simulate some ISR Code
for(i = 1; i < 0x02FF; i++) {}
// Enable more interrupts from this timer
EvaRegs.EVAIMRB.bit.T2PINT = 1;
// Note: To be safe, use a mask value to write to the entire
// EVAIFRB register. Writing to one bit will cause a read-modify-write
// operation that may have the result of writing 1's to clear
// bits other then those intended.
EvaRegs.EVAIFRB.all = BIT0;
// Acknowledge interrupt to recieve more interrupts from PIE group 3
PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
}
// This ISR MUST be executed from RAM as it will put the Flash to sleep
// and then later move it to Standby
interrupt void evb_timer3_isr(void)
{
Uint16 i;
// Put the Flash to sleep
FlashRegs.FPWR.bit.PWR = FLASH_SLEEP;
EvbTimer3InterruptCount++;
// Short Delay to simulate some ISR Code
for(i = 1; i < 0x01FF; i++) {}
// Sometime later, move the Flash to standby
FlashRegs.FPWR.bit.PWR = FLASH_STANDBY;
// Note: To be safe, use a mask value to write to the entire
// EVBIFRA register. Writing to one bit will cause a read-modify-write
// operation that may have the result of writing 1's to clear
// bits other then those intended.
EvbRegs.EVBIFRA.all = BIT7;
// Acknowledge interrupt to receive more interrupts from PIE group 4
PieCtrlRegs.PIEACK.all = PIEACK_GROUP4;
}
// This ISR will be executed out of Flash
interrupt void evb_timer4_isr(void)
{
Uint16 i;
EvbTimer4InterruptCount++;
// Short Delay to simulate some ISR Code
for(i = 1; i < 0x00FF; i++) {}
// Note: To be safe, use a mask value to write to the entire
// EVBIFRB register. Writing to one bit will cause a read-modify-write
// operation that may have the result of writing 1's to clear
// bits other then those intended.
EvbRegs.EVBIFRB.all = BIT0;
// Acknowledge interrupt to recieve more interrupts from PIE group 5
PieCtrlRegs.PIEACK.all = PIEACK_GROUP5;
}
//===========================================================================
// No more.
//===========================================================================
在这个程序中,中断 1 2 3是在RAM中执行的
我认为他们就是因为有
#pragma CODE_SECTION(eva_timer1_isr, "ramfuncs");//eva_timer_isr为一个函数名
#pragma CODE_SECTION(eva_timer2_isr, "ramfuncs");
#pragma CODE_SECTION(evb_timer3_isr, "ramfuncs");
以上3句话,给它们分配了段,再通过MEM函数复制到了RAM中执行,但是中断4没处理
中断4就是在flash中执行,不知道我理解错了没、
麻烦斑竹了 |