引言 对测控现场的被测模拟信号的处理一般常用A/D或V/F转换技术,两种方法各有特点:A/D转换技术一般用于被测信号速率较高,但干扰不是太严重的场合,而V/F转换技术由于具有较强的抗干扰性且便于实现信号的远传和隔离,因此往往用于现场的干扰较为严重、且信号传输距离较远的场合。但由于V /F变换的采样速率较低,在对分辨率、采样速率和抗干扰性要求都较高时,则采用V/F转换技术往往也难以满足采样要求。尽管A/D转换的采样速率较高,但由于其抗干扰性较差,从而使系统的可靠性、稳定性和测试精度都会受到影响,有时甚至无**常工作。 本文提出一种采用PWM技术的新型的高性能模数转换器的设计方法,利用MCU内部的定时器,结合改进的逐次逼近的对分试探算法,只须采用普通元器件即可设计出具有高分辨率的A/D转换器,以实现对模拟电压的测量,通过实验证明该设计能够达到较高的精度和分辨率,电路简单、可靠、成本低、传输信号线少,便于远传或隔离,抗干扰能力强,具有较好的应用价值。 基于PWM技术的A/D转换工作原理及接口电路设计 一般模数转换包括采样、保持、量化和编码四个过程。采样就是将一个连续变化的信号x (t) 转换成时间上离散的采样信号x (n) 。通常采样脉冲的宽度tw 是很短的,故采样输出是断续的窄脉冲。要把一个采样输出信号数字化,需要将采样输出所得的瞬时模拟信号保持一段时间,这就是保持过程。量化是将连续幅度的抽样信号转换成离散时间、离散幅度的数字信号,量化的主要问题就是量化误差。编码是将量化后的信号编码成二进制代码输出。这些过程有些是合并进行的。例如,采样和保持就利用一个电路连接完成,量化和编码也是在转换过程同时实现的,且所用时间又是保持时间的一部分。
|