精确的频率测量和时间测量
分辨率和精度 分辨率定义为计数器区别相近频率的能力,如下图。这与显示位数和输入信号的频率有关。显示位数是越多越好。
但显示位数必须得到精度的支持。如果有其它误差使计数器的测量结果偏离真实频率时,其高位数并无实际意义。也就是说计数器提供的可能是对不正确频率的非常精细的读数。 真实测量精度是随机误差和系统误差的函数。随机误差是分辨率不确定度的来源,它包括量化误差(在闸门时间窗内围绕最终计数的不确定度),触发误差(如在噪声尖峰上触发)和时基的短期不稳定度。系统误差是测量系统内的偏移,它使读数偏离信号的真实频率。这里包括时基晶体的影响,如老化,以及温度和电网电压变化等等。 下图中比较了两台计数器。计数器A有好的分辨率和很大的偏移误差,计数器B分辨率差,但系统偏移误差较小,结果是在大多数情况下,计数器A显示结果的精度要比计数器B低。
数学家John Tukey对此解释为对正确问题的近似答案远优于对错误问题的精确答案。确保频率和时间参数测量的高精度,需要从仪器的校准、时基的选择、降低触发误差等多多方面考虑。因此,接下来我们将一一谈这些问题。 时基的选择 上面谈到了频率和时间测量的分辨率和精度。相信很多工程师会感兴趣测量一个结果后,其误差或不确定度到底是多少。测量的不确定度是由3个因素构成的,即 基本不确定度=k*(随机不确定度±系统不确定度±时基不确定度) 事实上,要获得准确的随机不确定度和系统不确定度是一件非常恐怖的事情。它是与众多参数相关的非常复杂的函数。如果诸位有兴趣了解这个,可以到网上查阅安捷伦53200系列频率计数器的详细资料。好在安捷伦的工程师将这个复杂的运算公式做成了一个简单的表格。您只需输入测量的相关设置和结果,这个表格可以自动帮助你得出不确定度。 关于随机不确定度和系统不确定度,这与闸门时间和测量次数密切相关。简单地讲,延长闸门时间和增加测量次数,都可以降低者两个不确定度。但时基的不确定度是由计数器本身的老化和工作环境,以及其本身的相位噪声等参数决定的。频率计数器的测量精度始于时基,因为它建立了测量输入信号的参考。更好的时基有可能得到更好的测量。例如,如果时基的月老化率是0.1ppm,仪器在校准后一个月内使用,它对10MHz信号测量带来的不确定度则是1Hz。但如果老化率是0.01ppm,其带来的不确定度只有0.1Hz. 环境温度对石英晶体的振动频率有很大影响,可根据热行为把时基技术分为三类: 1.标准时基。标准或“室温”时基,不使用任何类型的温度补偿或控制。其最大优点是便宜,但它也有最大的频率误差。下图中的曲线示出典型晶体的热行为。随着环境温度的改变,频率输出能变化5ppm或更高。对于1MHz信号为±5Hz,因此是测量中必须考虑的重要因素。在通用侧测试仪器,如示波器、函数信号发生器、频谱仪中,采用的是这种时基。在过去低端的频率计数器,其标准配置的时基也这这种得标准时基
2.温度补偿时基。有时,我们也称之为高稳时基。一种解决晶体热变化的方法是让振荡器电路中的其它电子元件补偿其热响应。这种方法可稳定其热行为,把时基误差降低到约0.1ppm(对1MHz信号为±10.1Hz)典型的事安捷伦53200A系列频率计数器标准配置的时基就是这种,其老化率可达到0.1ppm。有时,这种时基也被用于输出频率精度更高的信号源,如安捷伦的33520A系列函数和任意波性发生器,这种时基就是一个选件 3.恒温槽控制。稳定振荡器输出的最有效方法是让晶体免受温度变化。计数器设计师把晶体放入恒温槽,保持其温度在热响应曲线的特定点。从而能得到好得多的时基稳定度,典型误差只有0.0025ppm(对于1MHz信号为±0.0025Hz)。 所得到的好处还不仅仅是与温度相关的精度。恒温槽控制时基还能降低晶体老化效应,从而不需要频繁地送校计数器。例如标准Agilent 53220A RF计数器的月老化率<0.2ppm(对于1MHz信号为±0.2Hz)。而可选高稳定度恒温槽则降到每月<0.01ppm(对于1MHz信号为±0.01Hz)。即标准时基的老化要比高稳定型高出20倍。
|