基于SVPWM算法的变频调速系统设计方案
**先通过阐述变频调速系统的基本构成、SVPWM算法的基本原理、参数计算以及实现方法,然后给出 SVPWM算法在DSP2407上实现的具体计算过程,最后经过试验,验证整套系统能够正常并准确工作。同时基于MATLAB/Simulink设计了仿真模型进行算法仿真,仿真波形与理论基本相符,证实了该方案的可行性。 1.引言 随着新型电力电子器件的不断更新,变频调速技术得到了极大的发展,经过半个多世纪的发展、丰富和完善,变频调速技术已经成为应用最为广泛的调速方式。 然而传统的SPWM技术存在一些缺点,SPWM技术着重在使逆变器输出的电压尽量接近于正弦波,但电动机需要的是在气隙中形成圆形旋转磁场,产生恒定的转矩,这些是SPWM技术不易做到的,而SVPWM技术是把逆变器和电机作为一个整体来考虑,控制电压空间矢量,使电机获得幅值恒定的圆形旋转磁场,旋转转矩平稳,逆变器输出谐波小,谐波损耗小,因此它的应用日益广泛。 2.系统总体结构 变频调速系统由变频器、电动机和控制系统三大部分构成,有时还包括负载。总体结构如下图1所示。
变频器是一个能改变频率的交流电源。控制系用主要由控制器和电流、转速等检测仪器组成,用于按照给定指令,调节电动机的转速和控制电动机的转矩,完成传动任务。电动机主要是异步电动机,少数场合使用同步电动机。负载即各类工作机械、设备,用于完成各种生产任务。 3.SVPWM算法原理与实现 SVPWM的工作原理是将逆变器和电动机看成一个整体,依据电机磁链和电压的关系,用8个基本电压矢量合成期望的输出电压矢量,实现交流电动机变频调速。 3.1 两电平逆变器 一般低压逆变器的输入为一个单一的直流电源,当对此恒定的直流电压进行脉宽调制,输出为幅值一定的PWM波。如果设直流电压为,以低压节点为零电位,经过逆变器得到的一定的PWM波只有两个电平,即和0,因此这种逆变器称为两电平逆变器,如图2所示:
逆变器用6个IGBT(绝缘栅双极性晶体管)V1- V6构成三相逆变桥,V1、V3、V5为共阳极组,V2、V4、V6为共阴极组,每个桥臂2个IGBT串联,从连接点引出三相接线,把一个周期分为 360°,将V1-V6以相隔60°的电角度依次导通,每个IGBT导通180°。任一时刻有三个IGBT导通,同桥臂的另一个IGBT必须关断,这样工作逆变器可以对三相负载输出三相交流电。
一般情况下两电平逆变器六拍运行时,每隔60°切换一次,共有8种开关状态,按a、b、c相序可表示为100、110、010、011、001、101、000、111.每一种开关状态输出合成电压空间矢量out u 分别记为u1、u2、u3、u4、u5、u6、u0、u7,统称为基本矢量,其中u1-u6为有输出数值的矢量,称为非零矢量,u0、u7无电压输出,称为零矢量。8个电压矢量的空间分布如上图3所示,各矢量之间可分为六个扇区(Ⅰ-Ⅵ),电压矢量若按逆时针方向切换使电动机正转,若按顺时针方向切换使电动机反转。
|