今天复工,昨天晚上到公司,闲着无聊翻了下以前自己写的《一个电气工程师进入电子行业的总结-硬件篇》
看了下发帖日期,转眼三年过去了。看了自己三年前写的东西,心中有一些想法。
子曾经曰过,温故而知新。那还是记下来吧。看看自己认知层次是否提高,是否原地打转。
由于本人没有受过正规的高等教育(全日制),难免在认知层次上偏低,勿喷。
首先按照统计学的套路,我翻了一下自己的bom表,吃惊的发现,电阻电容的数量占大头,大于60%。
被动元器件的知识,在《电路分析基础》,《信号与系统》,《模拟电子技术基础》中,被称为线性系统。
个人认为这部分知识大学本科教材具有权威性,争议小。
同时根据工程经验
1、被动元器件通常在bom表数量上占绝对优势
2、个人经历,一般的被动元器件,工程师在使用时成本压力不大。你付出的学习成本,迅速转化为实用技能,用途广,正所谓,一个电容电阻见真功夫。
针对被动元器件的特点,应采取如下策略:
1、被动元器件在电子技术中的权重比你想象中的还要高,实用性也是比你想象中的高,由于这块知识比较成熟,应采用应试教育的策略,即在这一块尽可能拿高分,以提高总分(硬件水平)。
我自己的执行情况:
1、king5555的5段均衡器,从2段,三段,五段,发现了很多问题,也找出了一些方法。还需继续努力,动用各种方法提高被动元器件的水平。但是自我感觉提升很困难。
接下来就是二极管,三极管
二极管,电路分析基础和模电的小部,三极管是模电教材的内容。
而我的现实中,基本三极管是作为功率数字输出使用的。这一块没有深入学习。
直到有一天,用了一个运放加mos管做压控恒流源时,这个电路没有按照预定的设计工作。
引出来了,模电比较核心的内容,负反馈以及频率响应。
以分立三极管为主角的线性电路现实中很少的。被集成电路代替,如7805和运放(一般用途成本都不高)
由于运放现在是模电中事实的主角。学习三极管小信号模型意义何在呢。
现实中,运放+三极管构成电流激励,电压激励是广泛存在的。
此时运放模型加三极管模型,可以分析其频率响应,以分析稳定性问题。
这一块需消耗很多精力去学习。需要学习《信号与系统》个人认为模电中说的比较单薄。还需学习《自动控制原理》
负反馈和频率响应这个知识点,在机械、液压伺服,开关电源的环路,工控pid也是有广泛应用的。各个学科有不同术语和表达方式,但是数学模型还是拉式变换的传递函数为主。
这一块的知识从我的学习经历:
应该是高等数学->微分方程->信号与系统
个人认为,从高等数学直接学信号与系统有点难懂,需要微分方程这门课程。我个人认为麻省理工的基础课设置比较合理。在mit的体系中,给人感觉拉式变换是微分方程的优雅算子。
例如我看过ad797的帖子,讨论零极点,极点啥意思,你逆变换后看看。大致就是这个意思
从我最早的自学经历,单元微积分->积分变换->复变函数->信号与系统。国内教材引入了复分析,自学难度过高。给人感觉拉式变换除了算子功能,还给拉式变换注入了很多功能,变成一个了不得的分析方法。
导致拉式变换核心功能没有理解,被拉氏变换的花里胡哨的技巧所吸引,注意力被转移,导致其苦涩难懂。
当我后来学习了微分方程组,拉式变换也没什么大不了的。
总结:分立的三极管,在与运放组合时还是会用到的,当你碰到稳定性问题时,小信号那一套,分析整个环路还是会用到。尽管现实中一个rc电路搞定,但是搞懂原理还是要学的。
自我感觉接近三年前的设定的目标,模电学到频率响应这个层次。
运放作为模电中的事实主角,这三年没有提高,主要是通过公司动用点小资金搞了diy项目,了解下高速运放,r2r运放。这一块的知识点,教材讲的比较透彻(在不碰到稳定性问题的情况下)。主要是补充下单电源运放电路的设计。认知水平框架还是三年前的框架。
科学计算:
作为硬件设计,难免会碰到计算,不得不提到计算机,尽管你公司里的电脑很慢,但是用来做科学计算大部分时候都是很快的。
我心目中的科学计算分类代数计算(解析)和数值计算。matlab全部都支持。
3年前我写帖子的时候是不知道matlab有代数计算,后来看到模拟论坛有人用了这个东西,尽管不是matlab,但是这个知识点,经顺藤摸瓜,还是查到了相关资料。
自己在模拟论坛有很多计算,从最初的勉勉强强,到后面的熟练。有了这个偷懒的工具,在模电小信号分析,信心大增,什么pt100线性补偿呀,ntc线性化呀,各种有源滤波器,均衡器,都可以短时间自己算一遍,
以前不知道有这个,搞个小信号模型,手算要累死。
期间发现x和ad797关于晶体的阶数,发现还有直接得出传递函数的sapwin
后来分析的电路越来越复杂,阶数越来越高,不得不去翻翻king5555推荐的黑田彻的书,找点灵感。
总结:借助工具,大学的数学模型是可计算的,手算的话,基本很难。提高了学习模电中小信号模型的学习兴趣。当然,用着用着你就发现你对电路的定性分析能力是欠缺的。
非线性电路:
在市场竞争中存活下来的非线性电路,如rcc,分析困难,经验公式也只能计算个大概,非要去计算,没有意义,但是电路简单,可在调试阶段解决。
自我感觉:
1、科学计算有所提升
2、学了小信号模型
3、制作了拨码电容,拨码电阻,拨码稳压管,提高调试效率。
4、补充了《概率论与数理统计》,分析了贴片电阻质量,作为学习检验。
|
现控理论应学下,经典自控原理精通了也不错。做一个自控产品没有问题。
应该专业的讲分为:分立元件和集成元件;有源元件和无源元件;线性系统,非线性系统,时不变系统,时变系统等。