打印
[应用相关]

STM32常用数据采集滤波算法

[复制链接]
1150|33
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
tpgf|  楼主 | 2024-9-13 17:10 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
例如,STM32进行滤波处理时,主要目的是处理数据采集过程中可能产生的噪声和尖刺信号。这些噪声可能来自电源干扰、传感器自身的不稳定性或其他外部因素。

1.一阶互补滤波
方法:取a=0~1,本次滤波结果=(1-a)本次采样值+a上次滤波结果 优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合 缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号。

int firstOrderFilter(int newValue, int oldValue, float a)
{
        return a * newValue + (1-a) * oldValue;
}



2.中位值滤波
方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值 优点:能有效克服因偶然因素引起的波动干扰;对温度、液位等变化缓慢的被测参数有良好的滤波效果 缺点:对流量,速度等快速变化的参数不宜。

//中值滤波算法
int middleValueFilter(int N)
{
    int value_buf[N];
    int i,j,k,temp;
    for( i = 0; i < N; ++i)
    {
        value_buf = HAL_ADC_GetValue(&hadc1);       
                               
    }
    for(j = 0 ; j < N-1; ++j)
    {
        for(k = 0; k < N-j-1; ++k)
        {
            //从小到大排序,冒泡法排序
            if(value_buf[k] > value_buf[k+1])
            {
                temp = value_buf[k];
                value_buf[k] = value_buf[k+1];
                value_buf[k+1] = temp;
            }
        }
    }
               
    return value_buf[(N-1)/2];
}



3.算术平均滤波
方法:连续取N个采样值进行算术平均运算; N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4 优点:试用于对一般具有随机干扰的信号进行滤波。这种信号的特点是有一个平均值,信号在某一数值范围附近上下波动。 缺点:测量速度较慢或要求数据计算较快的实时控制不适用。

int averageFilter(int N)
{
   int sum = 0;
   short i;
   for(i = 0; i < N; ++i)
   {
        sum += HAL_ADC_GetValue(&hadc1);       
   }
   return sum/N;
}



4.滑动平均滤波
方法:把连续取N个采样值看成一个队列,队列的长度固定为N。每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据(先进先出原则)。把队列中的N个数据进行算术平均运算,就可获得新的滤波结果。 N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 优点:对周期性干扰有良好的抑制作用,平滑度高;试用于高频振荡的系统 缺点:灵敏度低;对偶然出现的脉冲性干扰的抑制作用较差,不适于脉冲干扰较严重的场合 比较浪费RAM(改进方法,减去的不是队首的值,而是上一次得到的平均值)

//平滑均值滤波
#define N 10
int value_buf[N];
int sum=0;
int curNum=0;
int moveAverageFilter()
{
    if(curNum < N)
    {
        value_buf[curNum] = HAL_ADC_GetValue(&hadc1);
        sum += value_buf[curNum];
                          curNum++;
        return sum/curNum;
    }
    else
    {
        sum -= sum/N;
        sum += HAL_ADC_GetValue(&hadc1);
        return sum/N;
    }
}



5.限幅平均滤波
方法:相当于“限幅滤波法”+“递推平均滤波法” 每次采样到的新数据先进行限幅处理再送入队列进行递推平均滤波处理 优点:对于偶然出现的脉冲性干扰,可消除有其引起的采样值偏差。 缺点:比较浪费RAM

//限幅平均滤波
#define A 50        //限制幅度阈值
#define M 12
int data[M];
int First_flag=0;
int LAverageFilter()
{
  int i;
  int temp,sum,flag=0;
  data[0]=HAL_ADC_GetValue(&hadc1);
        for(i=1;i<M;i++)
        {
                temp=HAL_ADC_GetValue(&hadc1);
                if((temp-data[i-1])>A||((data[i-1]-temp)>A))
                {
                  i--;flag++;
                }
                else
                {
                        data=temp;
                }
        }
  for(i=0;i<M;i++)
  {
    sum+=data;
  }
  return  sum/M;
}

6.卡尔曼滤波
核心思想:根据当前的仪器"测量值" 和上一刻的 “预测量” 和 “误差”,计算得到当前的最优量,再预测下一刻的量。里面比较突出的是观点是:把误差纳入计算,而且分为预测误差和测量误差两种,通称为噪声。还有一个非常大的特点是:误差独立存在,始终不受测量数据的影响。

优点:巧妙的融合了观测数据与估计数据,对误差进行闭环管理,将误差限定在一定范围。适用性范围很广,时效性和效果都很优秀。

缺点:需要调参,参数的大小对滤波的效果影响较大。

//卡尔曼滤波
int KalmanFilter(int inData)
{
                static float prevData = 0;   //先前数值 上一次滤波后的数据,作为下一次滤波的初始值
                static float p = 10, q = 0.001, r = 0.001, kGain = 0;    // q控制误差  r控制响应速度
               
            //更新估计误差方差
                p = p + q;
            //计算卡尔曼增益
                kGain = p / ( p + r );                                    
            //计算本次滤波估计值
                inData = prevData + ( kGain * ( inData - prevData ) );  
            //更新测量方差
                p = ( 1 - kGain ) * p;                                    
                prevData = inData;
                return inData;                                             //返回滤波值
}



prevData:保存上一次滤波后的数据,用于下一次的滤波。 p:估计误差方差,表示当前估计值的不确定性。 q:过程噪声方差,表示系统模型的不确定性。 r:测量噪声方差,表示测量数据的不确定性。 kGain:卡尔曼增益,决定了测量数据和估计数据对当前状态估计的影响程度。

初始化静态变量

更新估计误差方差

计算卡尔曼增益

更新估计值

更新估计误差方差

保存当前估计值

返回滤波后的值

7.限幅滤波
核心思想:根据经验判断,确定两次采样允许的最大偏差值(设为A),每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效,如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值。 优点:能克服偶然因素引起的脉冲干扰 缺点:无法抑制周期性的干扰,平滑度差

#define  A 51
u16 Value1;

u16 filter1()
{
  u16 NewValue;
        Value1 = ftable[b-1];
  NewValue = ftable;
        b++;
        a++;
        if(a==255) a=0;
        if(b==255) b=1;
  if(((NewValue - Value1) > A) || ((Value1 - NewValue) > A))
        {
                print_host(ftable[a],NewValue);
    return NewValue;
        }
  else
        {
                 print_host(ftable[a],Value1);
     return Value1;
        }
}

8.加权递推平均滤波
核心思想: 是对递推平均滤波法的改进,即不同时刻的数据加以不同的权;通常是,越接近现时刻的数据,权取得越大,给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低。 优点: 适用于有较大纯滞后时间常数的对象,和采样周期较短的系统。 缺点: 对于纯滞后时间常数较小、采样周期较长、变化缓慢的信号;不能迅速反应系统当前所受干扰的严重程度,滤波效果差。

#define FILTER8_N 12
int coe[FILTER8_N] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};    // 加权系数表
int sum_coe = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12; // 加权系数和
int filter_buf[FILTER8_N + 1];
int filter8()
{
  int i;
  int filter_sum = 0;
  filter_buf[FILTER8_N] = ftable[a];               
        a++;
        if(a==255)   a=0;
  for(i = 0; i < FILTER8_N; i++)
{
    filter_buf = filter_buf[i + 1]; // 所有数据左移,低位仍掉
    filter_sum += filter_buf * coe;
  }
  filter_sum /= sum_coe;
//        printf("%d\n",filter_sum);
  return filter_sum;
}

void pros8(void)
{
        u16 i=0;
        for(i=0;i<255;i++)
        {
     print_host(ftable,filter8());
        }
}

9.消抖滤波
方法: 设置一个滤波计数器,将每次采样值与当前有效值比较: 如果采样值=当前有效值,则计数器清零; 如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出); 如果计数器溢出,则将本次值替换当前有效值,并清计数器。 优点: 对于变化缓慢的被测参数有较好的滤波效果; 可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动。 缺点: 对于快速变化的参数不宜; 如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统。

#define FILTER9_N 51
u16 i = 0;
u16 Value;
u16 filter9()
{
  int new_value;
        Value = ftable[b-1];
  new_value = ftable;               
        b++;
        if(b==255)   b=1;
  if(Value != new_value)
        {
    i++;
    if(i > FILTER9_N)
                {
      i = 0;
      Value = new_value;
    }
  }
  else   i = 0;
  return Value;
}

void pros9(void)
{
        u16 i=0;
        for(i=0;i<255;i++)
        {
     print_host(ftable,filter9());
        }
}

————————————————

                            版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

原文链接:https://blog.csdn.net/weixin_64593595/article/details/142048936

使用特权

评论回复
沙发
sanfuzi| | 2024-9-13 19:52 | 只看该作者
每种滤波算法都有其特定的参数,如滑动平均滤波的窗口大小、卡尔曼滤波的增益等。需要根据实际情况进行调整,以达到最佳滤波效果。

使用特权

评论回复
板凳
jtracy3| | 2024-9-13 22:29 | 只看该作者
一阶低通滤波是一种线性滤波方法,通过计算当前数据和前一次滤波结果的加权平均值来平滑数据。一阶低通滤波具有较好的实时性能,但滤波效果受截止频率的影响。

使用特权

评论回复
地板
lzbf| | 2024-9-14 10:15 | 只看该作者
中值滤波通过对一组采样值进行排序,然后选择中间的值作为滤波结果。这种方法对于去除脉冲噪声特别有效。

使用特权

评论回复
5
juliestephen| | 2024-9-14 16:25 | 只看该作者
低通滤波用于去除高频噪声,保留低频信号成分。在STM32中,可以通过配置ADC的采样率和分辨率来实现硬件层面的低通滤波。

使用特权

评论回复
6
alvpeg| | 2024-9-14 19:26 | 只看该作者
对一组数据进行排序,然后取中值作为输出,对异常值有很好的抑制效果。

使用特权

评论回复
7
ingramward| | 2024-9-14 21:55 | 只看该作者
ADC的采样时间决定了采集到的信号频率范围。采样时间过短可能导致信号失真,采样时间过长则会降低系统的实时性能。需要根据实际信号的频率特性来设置合适的采样时间。

使用特权

评论回复
8
lzbf| | 2024-9-15 07:56 | 只看该作者
特别是在使用窗口滤波器时,需要处理边缘效应,例如使用循环缓冲区。

使用特权

评论回复
9
wwppd| | 2024-9-15 17:48 | 只看该作者
根据经验确定两次采样允许的最大偏差值,每次检测到新值时判断:如果本次值与上次值之差小于等于允许的最大偏差值,则本次值有效;否则取上次值作为本次值。

使用特权

评论回复
10
belindagraham| | 2024-9-16 09:13 | 只看该作者
在进行数据处理时,要注意数据类型的转换和溢出问题,特别是当涉及到累加和平均计算时。

使用特权

评论回复
11
yeates333| | 2024-9-16 11:14 | 只看该作者
了解 STM32 的 ADC 精度、采样频率等硬件特性,以便更好地选择和调整滤波算法参数。

使用特权

评论回复
12
janewood| | 2024-9-16 13:56 | 只看该作者
STM32的内存和计算能力有限,选择滤波算法时要考虑硬件资源的限制。

使用特权

评论回复
13
mollylawrence| | 2024-9-16 15:38 | 只看该作者
STM32的ADC有多种分辨率可供选择,如8位、10位、12位等。分辨率越高,采集到的数据精度越高,但同时也会增加ADC的转换时间。因此,需要根据实际应用场景和需求选择合适的分辨率。

使用特权

评论回复
14
adolphcocker| | 2024-9-16 18:37 | 只看该作者
一些滤波算法(如滑动平均滤波、中位值滤波)需要对一定数量的数据进行处理,因此需要设计合适的数据缓存机制。

使用特权

评论回复
15
vivilyly| | 2024-9-18 10:23 | 只看该作者
STM32的ADC模块本身具有一定的抗干扰能力,可以通过配置ADC的硬件滤波器来进一步提高数据采集的稳定性。

使用特权

评论回复
16
ulystronglll| | 2024-9-18 17:40 | 只看该作者
STM32的数据采集滤波算法有多种选择,每种算法都有其特点和适用场景。

使用特权

评论回复
17
Stahan| | 2024-9-18 18:56 | 只看该作者
滑动滤波是不是比较好啊

使用特权

评论回复
18
updownq| | 2024-9-18 19:38 | 只看该作者
简单移动平均滤波算法实现简单,计算速度快,但只适用于信号变化缓慢的场合。这种方法通过取最近一段采样值的平均值作为输出,可以有效地平滑数据,但对于快速变化的信号可能不够灵敏。

使用特权

评论回复
19
suncat0504| | 2024-9-18 19:54 | 只看该作者
实际应用时,一般采用哪种方法好?能同时使用不?

使用特权

评论回复
评论
呐咯密密 2024-9-19 13:52 回复TA
这个要根据场景的,同时使用一般不推介。 
20
backlugin| | 2024-9-19 12:35 | 只看该作者
滤波算法是非常重要的,因为它们可以减少噪声和错误数据对系统性能的影响。

使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

1867

主题

15482

帖子

11

粉丝