打印
[技术求助]

FFT的物理意义

[复制链接]
4416|33
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
一两研发|  楼主 | 2012-7-16 23:05 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。
    虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。
    现在圈圈就根据实际经验来说说FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此罗嗦了。
    采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方。
    假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果
采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时
间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒数关系。
  假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。对于n=1点的信号,是直流分量,幅度即为A1/N。
    由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。

    好了,说了半天,看着公式也晕,下面圈圈以一个实际的信号来做说明。
    假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下:
S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)
    式中cos参数为弧度,所以-30度和90度要分别换算成弧度。我们以256Hz的采样率对这个信号进行采样,总共采样256点。按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个
点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、第76个点上出现峰值,其它各点应该接近0。实际情况如何呢?
我们来看看FFT的结果的模值如图所示。

    从图中我们可以看到,在第1点、第51点、和第76点附近有比较大的值。我们分别将这三个点附近的数据拿上来细看:
1点: 512+0i
2点: -2.6195E-14 - 1.4162E-13i
3点: -2.8586E-14 - 1.1898E-13i

50点:-6.2076E-13 - 2.1713E-12i
51点:332.55 - 192i
52点:-1.6707E-12 - 1.5241E-12i

75点:-2.2199E-13 -1.0076E-12i
76点:3.4315E-12 + 192i
77点:-3.0263E-14 +7.5609E-13i
  
    很明显,1点、51点、76点的值都比较大,它附近的点值都很小,可以认为是0,即在那些频率点上的信号幅度为0。接着,我们来计算各点的幅度值。分别计算这三个点的模值,
结果如下:
1点: 512
51点:384
76点:192
    按照公式,可以计算出直流分量为:512/N=512/256=2;50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的幅度为192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来
的幅度是正确的。
    然后再来计算相位信息。直流信号没有相位可言,不用管它。先计算50Hz信号的相位,atan2(-192, 332.55)=-0.5236,结果是弧度,换算为角度就是180*(-0.5236)/pi=-30.0001。再
计算75Hz信号的相位,atan2(192, 3.4315E-12)=1.5708弧度,换算成角度180*1.5708/pi=90.0002。可见,相位也是对的。
根据FFT结果以及上面的分析计算,我们就可以写出信号的表达式了,它就是我们开始提供的信号。

    总结:假设采样频率为Fs,采样点数为N,做FFT之后,某一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以
N);该点的相位即是对应该频率下的信号的相位。相位的计算可用函数atan2(b,a)计算。atan2(b,a)是求坐标为(a,b)点的角度值,范围从-pi到pi。要精确到xHz,则需要采样长度为1/x秒
的信号,并做FFT。要提高频率分辨率,就需要增加采样点数,这在一些实际的应用中是不现实的,需要在较短的时间内完成分析。解决这个问题的方法有频率细分法,比较简单的方法是
采样比较短时间的信号,然后在后面补充一定数量的0,使其长度达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。
具体的频率细分法可参考相关文献。

[附录:本测试数据使用的matlab程序]
close all; %先关闭所有图片
Adc=2;  %直流分量幅度
A1=3;   %频率F1信号的幅度
A2=1.5; %频率F2信号的幅度
F1=50;  %信号1频率(Hz)
F2=75;  %信号2频率(Hz)
Fs=256; %采样频率(Hz)
P1=-30; %信号1相位(度)
P2=90;  %信号相位(度)
N=256;  %采样点数
t=[0:1/Fs:N/Fs]; %采样时刻

%信号
S=Adc+A1*cos(2*pi*F1*t+pi*P1/180)+A2*cos(2*pi*F2*t+pi*P2/180);
%显示原始信号
plot(S);
title('原始信号');

figure;
Y = fft(S,N); %做FFT变换
Ayy = (abs(Y)); %取模
plot(Ayy(1:N)); %显示原始的FFT模值结果
title('FFT 模值');

figure;
Ayy=Ayy/(N/2);   %换算成实际的幅度
Ayy(1)=Ayy(1)/2;
F=([1:N]-1)*Fs/N; %换算成实际的频率值
plot(F(1:N/2),Ayy(1:N/2));   %显示换算后的FFT模值结果
title('幅度-频率曲线图');

figure;
Pyy=[1:N/2];
for i="1:N/2"
Pyy(i)=phase(Y(i)); %计算相位
Pyy(i)=Pyy(i)*180/pi; %换算为角度
end;
plot(F(1:N/2),Pyy(1:N/2));   %显示相位图
title('相位-频率曲线图');

相关帖子

沙发
taokan1991| | 2013-6-17 21:47 | 只看该作者
好贴 对FFT的讲解浅显易懂 但有吧其本质说的清清楚楚 搞了几天 今天秒懂

使用特权

评论回复
板凳
taokan1991| | 2013-6-17 21:55 | 只看该作者
在你的例子中 如果我们要分离 它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V的交流信号 是不是吧 点1 点75 的值改为0 在IFFT 在DAC即可得到50HZ的信号。同时51点进行操作 可以改变他的幅值 相位对吗

使用特权

评论回复
地板
as374888472| | 2013-6-18 09:42 | 只看该作者
楼主 我最近也在搞这个  能否帮我?将一个1024个点复序列数组进行FFT变换啊???  有没参考的例子???

使用特权

评论回复
5
as374888472| | 2013-6-18 09:58 | 只看该作者
谁能帮我用MATLAB仿真一下,它这个1024个浮点复序列的数组经过FFT变换后的幅频响应图啊 1024个点复序列数组.zip (25.31 KB)

使用特权

评论回复
6
taokan1991| | 2013-6-18 13:31 | 只看该作者
百度上有啊

使用特权

评论回复
7
cjhk| | 2013-6-18 20:34 | 只看该作者
学习学习   谢谢了   楼主   很不错   需要好好看看   谢谢楼主  

使用特权

评论回复
8
cjhk| | 2013-6-18 20:35 | 只看该作者
这一块   有时间   还是需要好好消化消化  谢谢楼主  

使用特权

评论回复
9
shenmu2012| | 2013-6-18 23:07 | 只看该作者
FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。

使用特权

评论回复
10
zeluo| | 2013-6-20 07:30 | 只看该作者
好资料    不错   需要好好看看   谢谢了  楼主     顶一个  

使用特权

评论回复
11
kerby81| | 2013-6-20 08:30 | 只看该作者
学习了

使用特权

评论回复
12
ctudy| | 2013-7-3 15:49 | 只看该作者
FFT 可以实现对信号频率分量的快速分离,很有用。

使用特权

评论回复
13
hawksabre| | 2013-7-3 18:53 | 只看该作者
学习学习     谢谢了   楼主      顶一个  很不错     

使用特权

评论回复
14
hudi008| | 2013-7-4 00:01 | 只看该作者
很经典的。

使用特权

评论回复
15
hudi008| | 2013-7-4 00:02 | 只看该作者
有时候很简答的道理,书上很麻烦的讲解的

使用特权

评论回复
16
蚊音若雷| | 2013-7-4 09:11 | 只看该作者
由于本人要做电机互感的计算,正在看一本叫《快速傅立叶变换》的书,它从连续信号傅立叶变换到离散傅立叶变换再到快速傅立叶变换,300页的书啊,全是公式,有时真想一头撞死!为什么不能说的容易理解呢?

使用特权

评论回复
17
zeluo| | 2013-7-4 18:41 | 只看该作者
傅立叶变换这一块   确实很吃力    楼主   这一块   需要好好看看   顶一个    有时间   需要好好学一学  

使用特权

评论回复
18
trumpxp| | 2013-7-5 18:28 | 只看该作者
很不错的**   有时间    这一块   需要好好看看    顶一个    有时间   需要仔细钻研钻研    楼主    顶一个

使用特权

评论回复
19
hudi008| | 2013-7-5 22:50 | 只看该作者
这个讲解的很清晰,但是还没有太理解了。

使用特权

评论回复
20
hkcj| | 2013-7-6 16:02 | 只看该作者
讲解的很到位   需要仔细钻研钻研    有时间   希望能够吃透这一块   很不错

使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

个人签名:电子专业读书历程:电路分析-->模电-->数电-->信号与系统-->数据结构-->电磁场-->通信原理-->DSP-->微机原理-->微波-->随机-->单片机-->信息论-->精神病康复指南。

24

主题

1004

帖子

7

粉丝