汽车本身不断变化,驱动汽车的电子装置也是如此。最显着的莫过于插电式电动车 (PEV),其中的 300V 至 400V 锂离子电池取代了瓦斯桶,而三相推进马达取代了内燃机。精密的电池组电量监控、再生式煞车系统及复杂的传输控制可将电池使用时间优化,使得电池需要充电的频率减少。现今的电动车或其他种类的汽车都有许多可提升效能、安全、便利性及舒适感的电子模组。许多中阶车种均配备先进的全球定位系统 (GPS)、整合式 DVD 播放器及高效能音讯系统。
伴随这些先进的设备而来的,是对更高处理速度的需求。因此,现今的汽车整合了高效能微处理器及 DSP,使得核心电压下降至 1V,并且使电流上升 5A。使介于 6V 至 40V 之间的汽车电池产生如此的电: 宋体; FONT-SIZE: 14pt">本文将以没有复杂数**算的直觉方式,探讨成功操作切换稳压器的基本因素,主要包括:1) 回转率控制、2) 滤波器设计、3) 元件选用、4) 配置、5) 杂信扩散及屏蔽。
简便的 SMPS EMC
本文的目的在于不需要完全了解复杂的 EMI,即可尝试设计 EMI 相容的切换稳压器。事实上,与 EMI 有关的所有问题都是起因于未完全达到切换稳压器内电压与电流变化的速率,并起因于与电路板信号线上或元件内寄生电路元件的互动方式。以透过额定 14V 且以 5A 产生 5V 的汽车电池产生动力的 200 kHz 切换降压稳压器为例,若要达到可观的效率,切换节点的电压回转率应该只占导通时间的一小段,例如 1/12 以下。持续传导模式 (CCM) 下运作的降压转换器导通时间为 D/fsw,其中 D 是负载周期或脉宽调变 (PWM) 信号开启时间百分比与整段时间的比值 (ton 及 toff),而 fsw 是转换器的切换频率。
对于 CCM 中运作的降压转换器,电感电流一直是非零的正电流。在此情况下,负载周期为 D=Vout/Vin,在本例中为 38% (5V/14V)。使用 200 kHz 的切换频率时,我们很快计算出导通时间为 1.8 s。为支援此频率,控制开关的升降时间必须小于 90 奈秒。这使得我们注意到第一个减少杂信的方法,也就是回转率控制。您可能还无法理解,但是此时我们相当了解与 PWM 切换节点有关的谐波,也就是切换稳压器的控制波形。如果将此波形以图 1a 中所示的梯形表示,波形的谐波便能够以图 1b 中的内容表示,其中显现出 EMI 背后的驱动因素。此一「傅立叶包络」定义了可透过傅立叶分析或计算梯形波形导通时间及上升时间取得的谐波振幅。
检视频域时,可看出相等升降时间的梯形波形是由不同的谐波讯号所组成,这些讯号存在于周期讯号基本频率的整数倍数。值得注意的是,各谐波的能量会在 1/(p × t) 的第一个转折点 (导通时间) 减至 20 dB/dec,并且在 1/(p × tr) 的第二个转折点减至 40 dB/dec。因此,限制切换波形的回转率会对减少发射量具有重大影响。透过这项探讨,应该能够清楚呈现降低运作频率也有利于减少发射量。
AM 无线射频频带因素
汽车 EMI 规范的其中一个较困难之处与 AM 频带有关。此频带从 500 kHz 开始,一直持续到 2 MHz,对于切换稳压器相当适合。由于梯形波形的最高能量元件是基本元件 (假设没有任何电路板谐振),因此可在 AM 频带上下运作。
负载周期重要吗?
另一项重要因素是,如果负载周期刚好是 50%,复杂梯形切换波形的所有能量会以奇数谐波 (1、3、5、7…) 呈现。因此,以 50% 负载周期运作是最坏的情况。在 50% 上下的负载周期,即使出现谐波,也会发生自然的 EMI 扩散。
EMI 及 EMC 标准
您可以将 EMI 视为不适宜的能量,而这个能量不需要太多就有可能违反发射标准。事实上,EMI 是相当低的能量效应。例如,在 1 MHz 的状况下,只要 20 nW 的 EMI 便会违反 FCC 对于传导发射的规范。传导发射是以频谱分析仪监测输入来源高频率元件而测得。线路阻抗稳定网路 (LISN) 可做为切换稳压器的低阻抗,以及频谱分析仪线路杂信的高通滤波器。因此,切换稳压器的输入是下一个需要注意之处。
传导发射会成为辐射发射:输入滤波器因素
造成汽车出现 EMI 的其中一个主因是切换稳压器在电源排线传入 AC 电流。这些变化的电流本身具有辐射发射及传导发射的各种波形。例如,在非隔离式升压转换器中,图 2a 所示的输入电容 (C2) 及升压电感 (L1) 形成阻绝线路发射的单向 EMI 滤波器。然而,输入电流有此波形傅立叶扩展的 AC 三角波形,如图 2b 的绿色信号线所示。
只要加入 L2 及 C2,波形便会变成正弦曲线,而能量会重新调整为相当低的高频率峰值。不过,如果未能正确设计输入滤波器,则会将杂信放大而使得控制回路不稳定。因此,了解滤波器设计的概念,对于优化滤波器回应及成本相当重要。使用 SPICE 的 AC 分析是有效了解滤波器行为的工具。 |