利用方程式 2 进行分析:双极集电极散粒噪声 方程式2给出了一个双极晶体管集电极散粒噪声的关系。为了更好的理解这种关系,将其转换成一个电压噪声 Vcn(见图 7.10)可以说是好处多多。如果输入级偏置方案为已知项,则可以进行一步将公式简化。运算放大器输入级偏置方案有两类型,一类是可以迫使集电极电流与绝对温度 (PTAT) 成正比。对于一个与绝对温度成正比的偏置方案来说,集电极电流可以被视为一个常量与绝对温度的乘积。图 7.11显示了简化的 Vcn 方程式,该方程式基于一个 PTAT 偏置方案。其主要的计算结果是,噪声与温度的平方根成正比,而与 Ic 的平方根成反比。这样的计算结果说明了低噪声放大器总是具有强静态电流的原因。第四个经验法则就是据此得出的。该计算结果还表明,运算放大器噪声会随温度升高而增大。这就是第二个经验法则的理论基础。 图 7.10 将电流噪声转换成电压噪声 图 7.11 PTAT 偏置的集电极噪声电压 在一个集电极电流偏置不会随温度变化而发生漂移的“Zero-TC”配置中,运算放大器输入级同样会被偏置。图 7.12 显示了基于 Zero-TC偏置结构的简化的 Vcn 方程式。其主要的计算结果是,噪声与温度的平方根成正比,而与 Ic 的平方根成反比。由于受温度变化的影响很大,所以 Zero-TC 配置与 PTAT方法相比有不足的方面。需要注意的是,按照第二经验法则,这是最坏情况下的表现。 图 7.12 Zero-TC偏置集电极噪声电压 当 Ic 变动时,可以利用图 7.11 和图 7.12 的计算结果来确定噪声的改变量。在两种情况下,噪声均与 Ic 的平方根成反比。在一款集成电路运算放大器设计中,噪声通常主要来自差动输入级。不幸的是,产品说明书并没有给出有关该放大器偏置的信息。为了得到一个大概的估算值,您可以假设 Ic 的变化是与静态电流 (Iq) 的变化成正比例的。总之,输入级偏置要比 Iq 更好控制,因此这是一个保守的估算值。图 7.13 显示了一款 OPA227 在最坏情况下的噪声估算值。需要注意的是,在此情况下,Iq 的变化对噪声几乎没有影响。就大部分实际设计而言,这种变化不会超过 10%。请注意,热噪声变量和散粒噪声变量(Ic 变量)均不大于 10% 是第一个经验法则的理论基础。 图 7.13 基于 Iq 变量的最坏情况噪声 利用方程式 3 进行分析:双极基极散粒噪声和闪烁噪声 方程式 3 描述的是双极晶体管基极散粒噪声和闪烁噪声,该噪声源与运算放大器中的电流噪声相类似。也可以将该 电流噪声转换成电压噪声(请参见图 7.14)。对 PTAT 和 Zero-TC 偏置结构进行分析,可不像对集电极电流散粒噪声进行分析那么简单。这是因为偏置方法是为了对集电极电流进行控制而设计的,并且此种关联不会跟随基极电流。例如,一款带有 Zero-TC 集电器电流的器件不会有 Zero-TC 基极电流,因为双极电流增益随温度的变化而变化。
方程式 3 中的散粒噪声分量是造成宽带电流噪声的主要原因。请注意,电流噪声与 Ib 的平方根成正比,这就是宽带电流噪声要比宽带电压噪声更容易受影响的原因所在。Ib 的变化是由晶体管的电流增益 (beta) 造成的。 请注意,散粒噪声分量的形式与方程式 2 中的噪声分量形式相同。因此,除很难预计基极电流的温度系数以外,其他分析方法是一样的。所以为了简化起见,我们将不会把 Ib 散粒噪声的温度信息包括在内。 如图 7.14 所示,我们可以将闪烁噪声分量转换成一个电压噪声。请注意,闪烁噪声随温度的升高而增大,并随 Ic 的变化而降低。然而,闪烁噪声极易受工艺变化的影响,以至于闪烁噪声常量的变化可能会成为噪声的主要来源。这不同于常量不受工艺变化影响的宽带情况。第二个经验法则就是基于这个基本关系得出的。 图 7.14 闪烁噪声电压关系
|