手持式装置核心处理器的供电电压日益降低,但要兼顾效率与电池寿命,却是另一项挑战。在降压转换过程中最常利用的是开关稳压器和LDO稳压器,但缺点在于尺寸太大,LDO如电压偏离值很大时,转换效率就骤降,开关电容稳压器为新兴技术,结合开关电容器和LDO优点,可整合至可携式应用中。 设法降低核心处理器的供电电压是手持式装置的全新技术趋势之一,而在降压的同时,也必须兼顾以更高效率延长电池寿命的需求。目前这些装置裡有多种新功能都有降压转换需求,如应用处理器、**体和射频(RF)设计等,从负载和空间参数两项考量来看,目前在此类应用上最流行的解决方案,即採开关稳压器和低压降 (LDO)稳压器。 如只从效率考量,开关稳压器是最佳的选择,然当电子零件高度和解决方案的尺寸限制超出电感器使用範围时,转换器就可能改採LDO或开关电容(SC)稳压器形式,电源解决方案通常无法提供较多电路板空间,但开关稳压器可提供比LDO和开关电容稳压器更大的解决方案尺寸。 电压偏离导致LDO效率降低 LDO在要求的电压与电池电压相近时最有效率,但如电压偏离值很远时,LDO效率就会降的很低,例如以3.6伏特电压为一个仅要求1.5伏特电压的微处理器锂离子电池充电时,把电池电压与1.5伏特LDO连接起来,就能为微处理器产生一个完整、稳定和小量的电源,但耗电量却非常明显。 LDO消耗功率(PD)等于负载电流(ILOAD)与输入和输出电压的差相乘,即PD=ILOAD×(3.6~1.5)=ILOAD×2.3V。换句话说,此例中,如以LDO做降压转换器时,仅产生42%的效率,表示LDO消耗剩余功率,且大幅增加晶片(Die)温度,而此种温度上升将引发装置可靠性相关问题。 由于具电压增益能力,开关电容稳压器成为比线性稳压器更有效的解决方案,此电压增益透过在双相位,即充电相位和传输相位中的堆叠电容器和并行电容器所取得的输入电压与输出电压比率,如位于增益配置中的一个开关电容转换器的1/2将把一个3.6伏特的输入电压(VIN)转变为1.8伏特的输出电压 (VOUT);如要求的输出电压是1.5伏特,则功率消耗仅为300毫伏特与负载电流的乘积,相当于83%的效率。
|