前文谈及,在车载应用中(如T-BOX),对于高速信号的传输,PHY是冉冉升起的新星;而对于较低速信号的传输,CAN仍是必不可缺的成员。未来的T-BOX,很有可能需要将车辆的ID、油耗、里程、轨迹、车况(门窗灯、油水电、怠速等)、速度、位置、用车属性、车辆配置等都展现在车联网及移动车联网上,而这些速率要求相对较低的数据传输,靠的正是本文的主角CAN。 CAN总线由德国博世公司于上世纪80年代提出,至今已经成为了汽车中不可或缺的重要组成部分。为满足车载系统的不同要求,CAN总线又分成高速CAN和低速CAN。高速CAN主要用在对实时性要求高的动力系统的控制,如发动机、自动变速箱、组合仪表等。低速CAN主要是用在对实时性要求较低的舒适系统和车身系统的控制,如空调控制、座椅调节、车窗升降等。在本文主要谈及的是高速CAN。 虽然说CAN已经是非常成熟的技术,但是在汽车的应用中仍是面临着各种挑战。本文将会细数CAN目前面临的种种挑战,并介绍相关的应对技术。最后,还将详细介绍TI在CAN应用中的优势所在以及相当“硬核”的产品 挑战一:EMI性能优化 随着汽车中电子化密度逐年增加,对车载网络的电磁兼容性(EMC)提出了更高的要求,因为当所有元器件集成到同一系统时,必须要确保即便是面临着嘈杂的环境,各个子系统仍需按照预期正常工作。而CAN所面临的重大挑战之一,就是共模噪声所引起的传导辐射超标。 理想情况下,CAN使用差分链路传输可以有效防止外部噪声耦合。但实际应用中,CAN收发器并非是理想的,即便是CANH和CANL存在极细微的不对称,也会产生对应的差分信号,从而导致CAN的共模分量(也就是CANH和CANL的平均值)不再是一个恒定的直流分量,而是变成与数据相关的噪声。有两种不平衡会导致这种噪声:一种是稳态共模电平在显性和隐性状态下的不匹配引起的低频噪声,这种噪声模式频率范围很广,表现为一系列均匀间隔的离散谱线;另一种则是CANH和CANL在显隐性之间转换时存在时间差而引起的高频噪声,由数据边沿跃迁产生的短脉冲和干扰组成。下图1则是典型的CAN收发器输出共模噪声的例子。黑色(通道1)为CANH,紫色(通道2)为CANL,绿色则表示CANH和CANL的总和,其值等于在给定时间点上共模电压的两倍。 图- 1 典型的CAN收发器CANH/CANL的输出和共模噪声 由于共模信号可以通过辐射或传导耦合到系统的其他组件上,所以这种共模噪声将会直接影响电磁干扰的性能。根据(IBEE) Zwickau测量得到的传导辐射干扰结果一般会与OEM的限制线一同绘制,如图2所示。 图- 2 典型的CAN收发器的传导干扰 在图2中,收发器的传导干扰在低频和高频区域都超过了OEM要求。为了降低排放,通常会加入共模扼流圈进行外部滤波。虽然加入共模扼流圈可以有效降低排放,但却会带来其他的问题。 首先最明显的缺点是在增加了PCB的面积以及器件成本;其次扼流圈引入的串联电感与CAN总线的寄生电容会产生谐振,从而导致谐振频率处噪声增加。图3即为扼流圈电感引起的共模噪声。这种窄带噪声特别难控制,因为扼流圈电感和总线寄生电容因系统而异;还有就是扼流圈电感会增加总线上高瞬态电压的风险。电源或电池短路等故障条件会导致共模电流的突变。这既发生在短路、连接/断开的时候,也会发生在显性和隐性状态之间转换的时候。当流过扼流圈电感的电流迅速变化时,在驱动电路的CAN端也会产生很大的电压。在某些情况下,该电压可能超过CAN收发器的瞬态过电压处理能力,并导致永久性损坏。 图- 3 扼流圈电感引起的共模噪声 如果我们既要达到减少排放的目的,又希望避免扼流圈带来的众多缺点,不妨考虑一下另一种解决方案:减少CAN驱动导致的共模噪声输出。这听起来很简单,但是需要半导体制造商的精心设计。在隐性和显性状态下,需要严格控制CANH和CANL电压水平,以确保CAN总线波形尽可能保持平衡;此外,在显隐性之间过渡时,需要匹配好CANH和CANL线之间的过渡时间和时间偏差,以限制高频段的共模噪声。TI的TCAN1042-Q1 CAN收发器的瞬态波形如图4所示,图5是相应的传导干扰排放。 图- 4 CANH/CANL输出和共模噪声 图- 5 汽车故障保护CAN总线的传导排放 由图4、图5可以看出TCAN1042-Q1输出级匹配良好,输出共模噪声非常低。即便不用外部的共模滤波组件,辐射排放性能也能符合OEM的要求。虽然共模扼流圈广泛应用于汽车工业,但对于新的高性能CAN收发器,并不需要配备扼流圈。减去扼流圈使CAN总线实现更小的PCB面积、更低的BOOM成本,同时避免了电路谐振和感应电压峰值等问题。
|